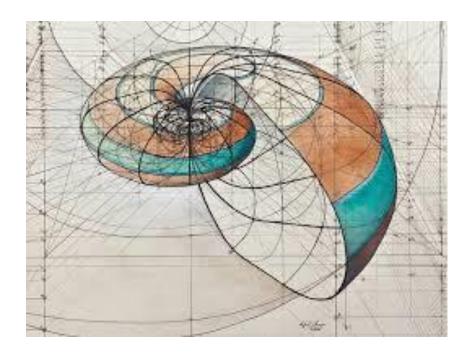


Funciones y procesos infinitos

Cuarto medio electivo

UNIDAD 1: PROGRESIONES INFINITAS

Clase 1: Sucesión y Sumatorias



1. Sucesiones

Definición 1

Una sucesión es una función definida de $N \rightarrow \mathbb{R}$ que se acostumbra a denotar por a_n en lugar de f(n), así:

$$a_n \in \mathbb{R}, \forall n \in \mathbb{N}$$

 a_n : Se llama término n-ésimo o término de lugar n.

 a_1 : Es el primer término de la sucesión.

 a_k : Es el k-ésimo término de la sucesión.

Las sucesiones se encuentran presentes en casi todos los tópicos de las matemáticas, de ahí su importancia. Eventualmente, $n \in \mathbb{N}_0$, $N_0 = \mathbb{N} \cup \{0\}$.

Ejemplo 1

Vamos a dar algunas sucesiones definidas por su término n-ésimo, o bien, en forma recursiva.

1.
$$a_n = \frac{2n-1}{n^2+1}$$

2.
$$a_n = 2n - 1$$

3.
$$a_n = (-1)^n$$

4.
$$a_n = \cos(n\pi)$$

5.
$$a_n = 1 + 2 + 3 + \ldots + n$$

6.
$$a_n = \frac{1}{n}$$

7.
$$a_1 = 1, a_2 = 2, \dots, a_{n+2} = a_{n+1} + a_n$$

8.
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, \dots, a_{n+1} = \sqrt{2 + a_n}$$

Dada la sucesión a_1, a_2, \ldots, a_n , su k-ésimo término es a_k , el siguiente término es a_{k+1} también llamado sucesor, el anterior al k-ésimo término es ak-1 también llamado antecesor.

Ejercicios resueltos 1.1

1. Dada la sucesión $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...$

a) Determine su término enésimo

b) Pruebe que
$$a_k - a_{k+1} = \frac{1}{k(k+1)}$$

c) Calcule $a_1 - a_{n+1}$

Solución:

a) De inmediato $a_n = \frac{1}{n}$

b)
$$a_k - a_{k+1} = \frac{1}{k} - \frac{1}{k+1} = \frac{k+1-k}{k(k+1)} = \frac{1}{k(k+1)}$$

c)
$$a_1 - a_{n+1} = \frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)} = \frac{1}{n(n+1)}$$

2. Dada la sucesión $1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, ...$

a) Determine su término n-ésimo

b) Determine el anterior y siguiente término n-ésimo

c) Calcule $a_{2k} - a_{2k+1}$

Solución:

a)
$$a_n = \frac{1}{2n-1}$$

b) Término anterior se determina reemplazando "n-1" en la expresión de a)
$$a_{n-1}=\frac{1}{2(n-1)-1}=\frac{1}{2n-2-1}=\frac{1}{2n-3}$$

De forma análoga, el término siguiente se determina reemplazando "n+1" en la expresión de a)

$$a_{n-1} = \frac{1}{2(n+1)-1} = \frac{1}{2n+2-1} = \frac{1}{2n+1}$$

c)
$$a_{2k} - a_{2k+1} = \frac{1}{2(2k)-1} - \frac{1}{2(2k+1)-1} = \frac{1}{4k-1} - \frac{1}{4k+1} = \frac{4k+1-(4k-1)}{(4k-1)(4k+1)} = \frac{2}{16k^2-1}$$

1.2 Ejercicios Propuestos

 Escriba los cuatro primeros términos, el término k-ésimo, el término anterior y siguiente del término k-ésimo de las siguientes sucesiones cuyo término n-ésimo es:

a)
$$n^2$$

d)
$$(-1)^n n$$

b)
$$2^n - n$$

e)
$$(-1)^{n+1}3^{2n}$$

c)
$$\frac{3n-5}{n+2}$$

f)
$$(1 + \frac{1}{n})^n$$

2. Escriba el enésimo término de las siguientes sucesiones

a)
$$1, 3, 5, 7, \ldots$$

b)
$$3, -9, 27, -81, \dots$$

c)
$$\frac{1}{1\cdot 2}$$
, $\frac{1}{2\cdot 3}$, $\frac{1}{3\cdot 4}$, $\frac{1}{4\cdot 5}$ + . . .

$$d) \ 5 \cdot 1, 11 \cdot 3, 17 \cdot 5, 23 \cdot 7, \dots$$

$$e) \frac{3}{1\cdot 2}, \frac{-7}{3\cdot 3}, \frac{11}{5\cdot 4}, \frac{-15}{7\cdot 5}, \dots$$

$$f) 1-x^2, 5+x^3, 9-x^4, 13+x^5, \dots$$

g)
$$1 \cdot (p-1), 3 \cdot (p-2), 5 \cdot (p-3), \ldots, p$$
 constante.

Soluciones:

a)
$$1^2, 2^2, 3^2 \text{ y } 4^2; k^2, (k-1)^2 \text{ y } (k+1)^2$$

b)
$$1, 2, 5, 12; 2^k - k, 2^{k-1} - (k-1) y 2^{k+1} - (k+1)$$

c)
$$-\frac{2}{3}, \frac{1}{4}, \frac{4}{5}, \frac{7}{6}; \frac{3k-5}{k+2}, \frac{3k-8}{k+1}, \frac{3k-2}{k+3}$$

d)
$$-1, 2, -3, 4; (-1)^k k, (-1)^{k-1} (k-1), (-1)^{k+1} (k+1)$$

e)
$$3^2, -3^4, 3^6, -3^8; (-1)^{k+1}3^{2k}, (-1)^k3^{2k-2}, (-1)^k3^{2k+2}$$

$$f) \ \ 2, \ \left(\frac{3}{2}\right)^2, \left(\frac{4}{3}\right)^3, \left(\frac{5}{4}\right)^4; \ \left(1+\frac{1}{k}\right)^k, \left(1+\frac{1}{k-1}\right)^{k-1}, \left(1+\frac{1}{k+1}\right)^{k+1}.$$

2. a)
$$a_n = 2n - 1$$

e)
$$a_n = \frac{(-1)^{n-1}(4n-1)}{(2n-1)(n+1)}$$

b)
$$a_n = (-1)^{n-1} 3^n$$

f)
$$a_n = 4n - 3 + (-1)^n x^{n+1}$$

c)
$$a_n = \frac{1}{n(n+1)}$$

g)
$$a_n = (2n-1)(p-n);$$

d)
$$a_n = (6n-1)(2n-1)$$

$$1 \le p \le n$$

2. Sumatorias

Una sumatoria es un símbolo que se ocupa para denotar en forma comprimida la suma sucesiva de los términos de una sucesión.

Definición 2:

Se define el símbolo Σ (Sigma, que se lee como sumatoria) inductivamente, por

1.
$$\sum_{i=1}^{1} a_i = a_1$$

2.
$$\sum_{i=1}^{n+1} a_i = \sum_{i=1}^n a_i + a_{n+1}, \text{ donde } a_n \text{ es una sucesión cualquiera.}$$

De esta definición se desprende fácilmente que,

$$\sum_{i=1}^{n+1} a_i = \sum_{i=1}^{n+1} a_i + a_2 + a_3 + \dots + a_n + a_{n+1} = a_1 + a_2 + a_3 + \dots + a_{n+1}$$

Nótese que $\sum_{i=1}^{n+1} a_i$ representa a una suma desde el primer término de la sucesión

 a_1 Para i=1 hasta el último término que en este caso es a_n para i=n. Es decir, en i=1 se inicia la suma de los sucesivos términos de a_i e i=n indica donde se finaliza la suma.

2.1 Propiedades de sumatoria

1.
$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)$$

2.
$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

Profes 3.
$$\sum_{k=1}^{n} k^3 = \left[\frac{1}{2}n(n+1)\right]^2$$

4.
$$\sum_{k=p}^{n} r^{k-1} = r^{p-1} \frac{r^{n-p+1} - 1}{r - 1}, \ r \neq 1, \ 0 \le p \le n$$

5. Sumatoria de un valor constante

$$\sum_{i=p}^{n} c = c(n-p+1), \ 0 \le p \le n$$

6. Sumatoria de un valor constante por una variable

$$\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i,$$

7. Sumatoria de una Suma (También conocida como distributiva)

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

8. Propiedad telescópica

Si $\{a_n\}_n$ es una sucesión, la suma de las diferencias de sus términos consecutivos está dada por:

$$\sum_{k=M}^{N} (a_{k+1} - a_k) = a_{n+1} - a_M$$

(Propiedad que se conoce como propiedad telescópica)

Nota:

La propiedad telescópica se aplica sobre la diferencia de dos términos consecutivos de una sucesión, independiente del orden en que estos se restan.

Ejemplo

$$\sum_{k=M}^{N} (a_k - a_{k+1}) = a_M - a_{n+1}$$

$$\sum_{i=p+2}^{N} (a_{i+3} - a_{i+2}) = a_{N+3} - a_{p+4}$$
2. $i=p+2$

Observación: La fórmula varía según el término inicial de la sumatoria. En estos casos se verán a partir del n=1 o n=0

2.2 Ejercicios resueltos

1. Desarrollar las siguientes sumatorias

a)
$$\sum_{k=4}^{8} k(2k-1)$$

b)
$$\sum_{k=0}^{n-1} (-1)^{k+1} \frac{2^k + 1}{k+2}$$

Solución:

De la definición se tiene:

a)
$$\sum_{k=4}^{8} k(2k-1) = 4 \cdot 7 + 5 \cdot 9 + 6 \cdot 11 + 7 \cdot 13 + 8 \cdot 15,$$

note que son 5 = 8 - 4 + 1 términos como debería ser.

b)
$$\sum_{k=0}^{n-1} (-1)^{k+1} \frac{2^k + 1}{k+2} = -\frac{2^0 + 1}{2} + \frac{2^1 + 1}{3} + \dots + (-1)^n \frac{2^{n-1} + 1}{n+1}.$$

Note que en este caso se tiene n-1-0+1=n términos.

2 Escribir usando \sum , las siguientes sumas:

1.
$$1^2 + 3^2 + 5^2 + \dots$$
 (hasta $n + 1$ términos)

$$2. \ 2 \cdot 7 + 5 \cdot 9 + 8 \cdot 11 + \ldots + 422 \cdot 287$$

3.
$$\frac{8}{3.5} - \frac{12}{5.7} + \frac{16}{7.9} - \dots$$
 (hasta *p* términos).

Solución:

De inmediato se tiene:

Profesor: Jet 1. $\sum_{k=0}^{n} (2k+1)^2$, note que n-0+1=n+1 términos.

- 2. Notemos que $a_k = (3k-1)(2k+5)$, $k=1,2,\ldots$ la sumatoria debe terminar en $3k-1=422 \wedge 2k+5=287$ de donde en ambos casos k = 141, por tanto $\sum_{k=1}^{141} (3k-1)(2k+5)$.
- 3. De inmediato se tiene $\sum_{k=1}^{p} (-1)^{k-1} \frac{4(k+1)}{(2k+1)(2k+3)}$.
- 3. Calcule el valor de las siguientes sumatorias

$$a) \quad \sum_{k=1}^{2n} k$$

$$b) \quad \sum_{k=3}^{n} k$$

a)
$$\sum_{k=1}^{2n} k$$
 b) $\sum_{k=2}^{n} k$ c) $\sum_{k=n+1}^{2n-1} k$

Solución

a)
$$\sum_{k=1}^{2n} k = \frac{1}{2} 2n(2n+1) = n(2n+1)$$

b)
$$\sum_{k=3}^{n} k = \sum_{k=1}^{n} k - (1+2) = \frac{1}{2}n(n+1) - 3$$

c)
$$\sum_{k=n+1}^{2n-1} k = \sum_{k=1}^{2n-1} k - \sum_{k=1}^{n} k = \frac{1}{2}(2n-1)(2n-1+1) - \frac{1}{2}n(n+1)$$

4. Calcula usando propiedad telescópica

$$\sum_{k=1}^{48} \left(\sqrt{k+1} - \sqrt{k} \right) = \sqrt{48+1} - \sqrt{1} = \sqrt{49} - \sqrt{1} = 7 - 1 = 6$$

5. ¿Se puede aplicar la propiedad telescópica? Entrega la solución

$$\sum_{k=1}^{100} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) =$$

SI porque la sumatoria dada es sobre la diferencia de dos términos consecutivos de la sucesión

Si
$$a_k = \frac{1}{2k-1}$$
 entonces $a_{k+1} = \frac{1}{2(k+1)-1} = \frac{1}{2k+1}$

$$\sum_{k=1}^{100} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) = \frac{1}{2-1} - \frac{1}{2 \cdot 100 + 1} = 1 - \frac{1}{201} = \frac{200}{201}$$

Ejercicios Propuestos

I) Resuelve las siguientes sumatorias usando solamente las propiedades entregadas

1.
$$\sum_{i=1}^{25} 3 =$$

1.
$$\sum_{i=1}^{25} 3 =$$
 2. $\sum_{n=5}^{32} (4n-1) =$

3.
$$\sum_{k=1}^{4} (2k+1) =$$

4.
$$\sum_{k=1}^{5} k^2 =$$

4.
$$\sum_{k=1}^{5} k^2 =$$
 5. $\sum_{k=1}^{4} (-1)^k 2k =$

6.
$$\sum_{k=1}^{3} \left(2 + \frac{1}{k}\right) =$$

7.
$$\sum_{k=1}^{4} (5^k - 1) =$$
 8. $\sum_{k=1}^{4} \frac{k}{k+1} =$

8.
$$\sum_{k=1}^{4} \frac{k}{k+1} =$$

9.
$$\sum_{i=1}^{6} (-1)^i =$$

10.
$$\sum_{n=3}^{5} \frac{n}{2n+2} =$$
 11. $\sum_{k=3}^{8} n =$

11.
$$\sum_{k=2}^{8} n =$$

12.
$$\sum_{s=2}^{6} \frac{2}{s} =$$

13.
$$\sum_{k=0}^{6} 10^{-k} =$$
 14. $\sum_{n=1}^{3} \frac{2^{k}}{k^{2}} =$

14.
$$\sum_{n=1}^{3} \frac{2^n}{k^2} =$$

15.
$$\sum_{k=0}^{4} 3^{-k} =$$

$$16.\sum_{k=1}^{40} k^2 =$$

17.
$$\sum_{n=1}^{24} (3n-2)$$

18.
$$\sum_{k=5}^{354} 5 =$$

Respuestas:

1	2	3	4	5	6	7	8	9
75	2.044	24	55	4	9	776	$\frac{163}{60}$	0
10	11	12	13	14	15	16	17	18

$\begin{array}{c cccc} 61 & 6n & 29 & 1,1 \\ \hline 140 & 10 & 10 & 1 \end{array}$	$\begin{array}{c c} 11 & 3 \cdot \frac{2^k}{k^2} & \frac{121}{81} \end{array}$	22.140	852	1.135
--	--	--------	-----	-------

II) Resuelve usando propiedad Telescópica

1.
$$\sum_{k=1}^{13} \left(\frac{5}{k+1} - \frac{5}{k} \right) =$$

2.
$$\sum_{k=5}^{20} \left(\frac{1}{k-3} - \frac{1}{k-4} \right) =$$

3.
$$\sum_{k=5}^{10} \left[(k+1)^3 - k^3 \right] =$$

4.
$$\sum_{n=2}^{13} \left(\frac{1}{2n} - \frac{1}{2n-2} \right) =$$

5.
$$\sum_{j=14}^{40} \left(\frac{3}{2j+1} - \frac{3}{2j-1} \right) =$$

6.
$$\sum_{j=1}^{8} (3^{j+1} - 3^j) =$$

Respuestas:

1	2	3	4	5	6
$-\frac{65}{14}$	$-\frac{16}{17}$	1.206	$-\frac{6}{13}$	$-\frac{2}{27}$	19.680